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Dynamics of the rotational degrees of freedom in a supercooled liquid of diatomic molecules

Stefan Kämmerer, Walter Kob,* and Rolf Schilling†
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~Received 18 April 1997; revised manuscript received 23 July 1997!

Using molecular-dynamics computer simulations, we investigate the dynamics of the rotational degrees of
freedom in a supercooled system composed of rigid, diatomic molecules. The interaction between the mol-
ecules is given by the sum of interaction-site potentials of the Lennard-Jones type. In agreement with mode-
coupling theory~MCT!, we find that the relaxation times of the orientational time correlation functions
C1

(s)(t), C2
(s)(t), and C1(t) show at low temperatures a power law with the same critical temperatureTc ,

which is also identical to the critical temperature for the translational degrees of freedom. In contrast to MCT,
we find, however, that for these correlators the time-temperature superposition principle does not hold well and
also the critical exponentg depends on the correlator. ForCl

(s) with l 53,...,6this principle does hold. We also
study the temperature dependence of the rotational diffusion constantDr and demonstrate that at high tem-
peraturesDr is proportional to the translational diffusion constantD and when the system starts to become
supercooled the former shows an Arrhenius behavior, whereas the latter exhibits a power-law dependence. We
discuss the origin for the difference in the temperature dependence ofD ~or the relaxation times ofCl

(s)! and
Dr . Finally, we present results that show that at low temperatures 180° flips of the molecule are an important
component of the relaxation dynamics for the orientational degrees of freedom.@S1063-651X~97!03411-9#

PACS number~s!: 61.20.Ja, 61.43.Fs, 02.70.Ns, 64.70.Pf
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I. INTRODUCTION

In the past ten years mode-coupling theory~MCT! @1–4#
has led to a strong interest in the phenomenon of the g
transition since this theory makes detailed predictions on
dynamics of glass formers in the vicinity of the glass tran
tion and thus challenges the experimentalists to test th
predictions. Starting from the microscopic equations of m
tion, MCT derives, by using certain approximations that
believed to be quite reliable forsimpleliquids, an equation of
motion for the density correlator. One of the main results
MCT is the existence of a dynamical transition at a tempe
ture Tc , at which, in the so-called idealized version of t
theory, the dynamics of the system undergoes a trans
from an ergodic (T.Tc) to a nonergodic behavior (T,Tc)
and which can be interpreted as a glass transition. Due to
presence of ergodicity-restoring processes, commonly ca
‘‘hopping processes,’’ most glass formers show, to a cer
extent, deviations from the predictions of the idealiz
theory since this version of MCT does not take into acco
these sort of processes. In the extended version of the th
hopping processes are taken care of and one finds that in
vicinity of Tc a crossover in the behavior of the dynami
can still be observed@1,2,4#. Many of the predictions of
MCT were confirmed by experiments and in numerical sim
lations on various glass-forming systems. For reviews
reader is referred to Refs.@1–5#.

In the real world most of the good glass formers aremo-
lecular systems. One of the important differences betwe
molecular systems and simple liquids is that the former h
orientational degrees of freedom~ODOF!. The dynamics of
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these ODOF can be measured, e.g., by dielectric spec
copy, light scattering, and NMR. For the molecular gla
former salol, e.g., it has been shown that MCT gives a s
isfactory description of the relaxation behavior of this syst
@6#. This conclusion seems to contradict the outcome of
periments in which the dielectric response of this system w
probed@7# because of the following fact: MCT predicts th
for all observables that couple to the density fluctuations
imaginary part of the corresponding susceptibility exhibits
minimum at the same frequencyvmin if one is very close to
Tc . Light scattering experiments have shown that in sa
this minimum occurs at a frequency of about 7 GHz
T5290 K @6#. However, Dixonet al. showed that at the
same temperature no such minimum is observed in the
electric functione9(v) for frequencies up to 18 GHz@7#,
thus seemingly contradicting the conclusions of Ref.@6# that
MCT gives a correct description of the dynamics of this s
tem. Similar conclusions were drawn for glycerol. Howev
in recent extensive dielectric measurements on glycerol
minimum was found and it was shown that the data can
described by theb correlator of MCT for simple liquids
@8,9#, although in this experiment the location of the min
mum is indeed different from the one in the light scatteri
experiment. This could be due to at least two reasons. F
the MCT equations formolecular liquids might be signifi-
cantly different from those forsimpleliquids, hence leading
to different predictions. Second, the predictions of MCT f
simple liquids can be used, but corrections to the asympt
laws of MCT have to be taken into account. These corr
tions make the reduction theorem invalid and therefore
location of the minimum depends on the observable@10#. We
also note that very recently evidence has been given th
minimum exists ine9(v) for salol also@11#. However, its
location remains still undetermined

The above discussion shows that the role of the ODOF
the glassy dynamics in the supercooled regime is certa

e
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56 5451DYNAMICS OF THE ROTATIONAL DEGREES OF . . .
not settled and thus remains an interesting field of resea
One possibility to gain some insight into the dynamics
supercooled liquids is to perform molecular-dynamics co
puter simulations of such systems@12#. Simulations of
simple liquids have shown that this method can indeed
very useful to understand the dynamics down to tempe
tures close toTc @13–15#. Forsupercooledmolecular liquids,
however, only few numerical simulation have been done
far. Signorini et al. investigated the dynamics of the ion
glass former@Ca~NO3!2#0.4@KNO3#0.6 ~CKN!, where the NO3
unit was treated as a rigid molecule@16# and Sindzingre and
Klein studied methanol@17#. Orthoterphenyl~OTP! was in-
vestigated by Lewis and Wahnstro¨m @18,19#, who modeled
the molecule with a rigid isoscale triangle of Lennard-Jon
particles, and by Kudchadkar and Wiest@20#, who used an
18-site, three-ring model. Very recently Sciortinoet al. pre-
sented their results on supercooled H2O ~also taken as a rigid
molecule! @21,22#. In these papers a two-step relaxation p
cess, as predicted by MCT, was observed for both the tr
lational and rotational degrees of freedom. But a more qu
titative analysis in the framework of MCT was essentia
restricted to the translational degrees of freedom~TDOF!. In
particular, it does not become clear from these stud
whether the ODOF freeze at the same temperature as
TDOF do since no detailed analysis with respect to this po
was made~although very recently evidence was given th
for water the freezing temperatures of the ODOF and
TDOF are very close together@22#!. The investigation of this
point is one of the major objectives of the present work. F
this we will focus on the time scale of thea relaxation and
discuss our findings regarding theb relaxation elsewhere
@23#. We also mention that in a very recent paper Ma and
investigated the dynamics of the translational degrees
freedom for a dumbbell-shaped molecule and argued tha
molecular character leads to a decrease of the MCT par
eterl @24#.

We note that the role of the ODOF was also studied
quite different types of systems. For the so-called mix
crystals, e.g., KBr12xK~CN!x , where the isotropic bromide
is partly substituted by the linear molecule CN, which lea
to a quencheddisorder, an orientational glass transition o
curs. For more details the reader may consult the review
Höchli et al. and Binder and Reger@25#. The reader should
note, however, that thesecrystallinesystems are very differ
ent from the molecular liquids in which we are interested
the present work.

The molecular system we consider consists of molecu
in which two different atoms are connected rigidly. Apa
from diatomic molecules with head-tail symmetry, this is t
simplestmolecular system one can choose. Although
choice of a linear molecule is of course somewhat specia
is nevertheless interesting to study the dynamics of suc
molecular system in the supercooled regime in order
check whether even such a simple system shows the
nomenon of a glass transition. Furthermore, the continu
rotational symmetry around the long axis of the molecu
simplifies also the theoretical description of this system,
compared to the molecules studied in Refs.@16–22#, and
thus allows us to make a more stringent test of the the
Although the MCT equations for a diatomic molecule in
simple liquid @26# and for molecular liquids have been r
h.
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cently derived@27,28#, they have not been analyzed in gre
detail so far. Since the structure of these equations is
identical to that for simple liquids, it is not obvious wheth
the predictions derived by Go¨tze and collaborators@1–4,29#
for MCT equations that apply to simple liquids are still vali
Thus one of the main motivation of the present work is
test whether these predictions hold also for the molecu
system investigated here.

The outline of our paper is as follows. In the next secti
we define the various correlators and diffusion constants
we will study. In addition, we also summarize those resu
of MCT whose validity we will check for the present system
In Sec. III the model and the details of the computer sim
lation are presented. The results are given in Sec. IV and
discussed in Sec. V where we also offer our main conc
sions.

II. CORRELATION FUNCTIONS AND PREDICTIONS
OF MCT

In this section we define the correlation functions that
studied in this work and recapitulate some of the predictio
of MCT. More details on MCT can be found in Refs.@1–4#.

To study the static and dynamical properties of mac
scopic systems withN particles it is convenient to use co
relation functions. For the translational degrees of freedom
is customary to characterize the dynamics with the help
the Van Hove correlation function or its space Fourier tra
form, the intermediate scattering function. For the rotatio
degrees of freedom convenient correlation functions are
functionsCl(t) andCl

(s)(t), which are defined as

Cl~ t !5
1

N (
n,n8

^Pl„uW n~ t !•uW n8~0!…&, l>1 ~1!

and its self-part

Cl
~s!~ t !5

1

N (
n51

N

^Pl„uW n~ t !•uW n~0!…&, l>1. ~2!

HerePl(x) is the Legendre polynomial of orderl anduW n is
the normalized orientational vector of thenth molecule.
These orientational correlation functions are straightforw
generalizations of the intermediate scattering function to
case where also ODOF are present. More details on
point are given in Ref.@23#. The experimental relevance o
the functionsCl(t) is given by the fact that forl 51 andl 52
they can be measured in dielectric and light scattering
periments, respectively. We also note that it is often assum
~cf., e.g., Ref.@30#! that the cross terms inCl(t) can be
neglected. In that case the experiments would also yield
formation onCl

(s) . We will discuss this point below.
In addition to the intermediate scattering function or t

correlators given in Eqs.~1! and ~2!, the dynamics of the
system can also be studied by means of the autocorrela
functions of the velocitiesvW n(t) of the particles

F~ t !5
1

N (
n51

N

^vW n~ t !•vW n~0!& ~3!

or the corresponding one of the angular velocitiesvW n(t)
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C l~ t !5
1

N (
n51

N

^Pl„cosan~ t !…&, l>1, ~4!

wherean(t) is the angle betweenvW n(t) and vW n(0). It was
recently shown thatC2(t) is particularly useful to study the
freezing of the ODOF@31#. Since the translational and rota
tional diffusion constantsD and Dr , respectively, can be
obtained by means of a Green-Kubo relation from Eqs.~3!
and ~4!, respectively, the significance of these time corre
tion functions is obvious.

In the strongly supercooled regimeF(t) and C1(t) ex-
hibit a negative, slowly decaying long time tail. This mak
the numerical calculation ofD andDr from the Green-Kubo
relation a difficult task if the temperatures are low. The
fore, it is customary to use the corresponding Einstein re
tions, which are mathematically equivalent to the Gre
Kubo identity. For the TDOFD is then determined from the
mean squared displacement

D5 lim
t→`

1

6tN (
n51

N

^uxWn~ t !2xWn~0!u2&. ~5!

To obtain the analog to this equation for the ODOF we
place xWn(t) by the corresponding variablefW n(t), which is
defined as

fW n~ t !2fW n~0!5DfW n~ t !5E
0

t

dt8vW n~ t8!. ~6!

In analogy to Eq.~5! we thus obtain the following Einstein
relation for the ODOF,

Dr5 lim
t→`

1

4tN (
n51

N

^ufW n~ t !2fW n~0!u2&. ~7!

Note that fW n(t) is not bounded, in contrast touW n(t),
which is restricted to the surface of a unit sphere. This is
reason why a replacement ofxWn(t) by uW n(t) in Eq. ~5! would
yield Dr50.

Let us now recapitulate those predictions of the idealiz
version of MCT that are relevant for the present work. Mo
details can be found in Refs.@1–4#. The theory predicts that
in the vicinity of the critical temperatureTc , all time corre-
lation functionsf(t) that couple to the density correlatio
function should show a two-step relaxation behavior, i
exhibit a plateaulike region when plotted versus the lo
rithm of time. The time window in whichf is in the vicinity
of this plateau is called theb-relaxation regime. The time
window in which the correlator falls below this plateau
called thea-relaxation regime.

MCT predicts that upon approachingTc from above, the
a-relaxation timet(T) diverges with a power law, i.e.,

t~T!}~T2Tc!
2g, ~8!

with a critical exponentg.1.5. Note that the values ofTc
andg are predicted to be independent of the correlator. F
thermore, the theory predicts that also the translational
fusion constantD shows in the vicinity ofTc a power-law
behavior, i.e.,
-

-
-
-

-

e

d

.,
-

r-
f-

D~T!}~T2Tc!
g, ~9!

with the sameg as in Eq.~8!.
Finally, the theory makes the prediction that the corre

tors should obey the so-called time-temperature superp
tion principle. This means that if a correlatorf(t,T) is plot-
ted versus the reduced timet/t(T), the curves correspondin
to the different temperatures fall, in thea-relaxation regime,
on a master curvef̂, i.e.,

f~ t,T!5f̂„t/t~T!…, ~10!

the shape of which is approximated well by a Kohlrausc
Williams-Watts function, i.e., f̂(t/t)'A exp@2(t/t)b#,
where the amplitudeA and the exponentb arenot universal,
i.e., will depend onf.

III. MODEL AND DETAILS OF THE SIMULATION

The model we investigate is a one-component system
rigid, diatomic molecules. Each molecule is composed
two different Lennard-Jones particles, in the following d
noted byA andB, which are separated by a distanced and
each of which has the same massm. The interaction between
two molecules is given by the sum of the interaction betwe
the four particles, which is given by the Lennard-Jones
tential Vab(r )54eab$(sab /r )122(sab /r )6%, where a,b
P$A,B%. The Lennard-Jones parameters are given
sAA5sAB51.0, sBB50.95, eAA5eAB51.0, andeBB50.8
and were chosen such that the system did not show any
of crystallization even at the lowest temperatures inve
gated here. In the following we will use reduced units a
sAA as the unit of length,eAA as the unit of energy~setting
kB51!, and (sAA

2 m/48eAA)1/2 as the unit of time. If the at-
oms are argonlike, this time unit corresponds to appro
mately 0.3 ps.

The choice of the intramolecular distanced between theA
and B particles requires some consideration. On the o
hand,d has to be large enough to allow for a sufficient
strong coupling between the translational and rotational
grees of freedom. On the other hand, it has to be so sm
that first the formation of liquid-crystalline structures is u
likely @32# and that second the energy barrier involved in t
intersection of two molecules is so large that at the tempe
tures and on the time scale of the simulation such a cros
does not occur. We found that a value of 0.5 is a good co
promise.

In order to make the simulation more realistic we did it
constant external pressurepext51.0. For this we equilibrated
the system in theNpT ensemble, using the algorithm pro
posed by Andersen@33# and by setting the mass of the pisto
to 0.05. The length of these equilibration runs always
ceeded the typical relaxation time of the system at the te
perature considered, which allows us to conclude that in
subsequent production runs we were investigating theequi-
librium dynamics of the system. After having determin
from this equilibration run the appropriate density of the s
tem for the temperature of interest, we fixed the total den
to the so-obtained density and started a production run in
microcanonical ensemble using the rattle algorithm@34#.
Note that it is advisable to make the production run in t
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56 5453DYNAMICS OF THE ROTATIONAL DEGREES OF . . .
microcanonical ensemble if one wants to investigate the
namics of the system, since the algorithms used for cons
pressure simulations introduce an artificial dynamics t
might lead to unphysical results. The step size we chose
0.01 for the higher and 0.016 or 0.02 for the lower tempe
tures. For runs shorter or equal to 1.43105 time units these
step sizes are sufficiently small to allow one to neglect
drift in the total energy during the runs. This is not the ca
for the long runs at the two lowest temperatures, which h
lengths of 3.03105 and 4.03105 time units, respectively
~51.53107 and 2.03107 time steps!. During these runs the
value of the total energy was reseted periodically~about 30
times during the whole run! to its value at the start of the ru
by rescaling the velocities of all the particles appropriate
Since this interference with the dynamics is only very we
it can be expected that the final result will essentially
independent of it.

The temperatures we investigated areT55.0, 3.0, 2.0,
1.4, 1.1, 0.85, 0.70, 0.632, 0.588, 0.549, 0.520, 0.500, 0.
and 0.477. The total number of molecules was 500, and
order to improve the statistics of the results we average
each temperature over at least eight independent runs.

IV. RESULTS

Before we start to present the results on how the OD
freezes, it is useful to investigate the dynamics of the TDO
since this allows us to estimate the temperature rang
which the system is supercooled. Therefore, we compu
from the mean squared displacement of the center of
molecules the translational diffusion constantD. MCT pre-
dicts that, in the vicinity of the critical temperatureTc , the
diffusion constant will show a power law@see Eq.~9!#. Thus
we fitted our data forD with such a law, usingTc as a fit
parameter. In Fig. 1 we show the diffusion constant ver
T2Tc in a double logarithmic plot. Also included is the fi
with the power law of Eq.~9!. We recognize that this fit is
very good for a surprisingly large range inT and D. In
particular, this range is significantly larger than the o
found for the atomic Lennard-Jones system@14,15#. Since no
analogous analysis was done for the molecular systems s

FIG. 1. Self-diffusion constantD versusT2Tc . The solid line
is a fit with a power law with the exponent 2.20. The dashed lin
a guide to the eye.
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ied in Refs.@16–20# and the range inD explored in Ref.@21#
was significantly smaller than the one considered here, it i
the moment not clear whether the fact that the power law
be observed over such an extended range inD is a peculiar-
ity of the present system or whether it is a general feature
molecular systems.

From the figure we also note that at the two lowest te
peratures the diffusion constant is significantly higher tha
would be estimated from the power law that fits the data w
at higher temperatures. The reason for this are likely
so-called hopping processes@35#, the contributions to the
relaxation that are not accounted for in theidealizedversion
of the MCT. Thus it can be expected that for such low te
peratures the predictions of this idealized version of
theory are no longer valid.

The value of the critical temperatureTc is 0.47560.005,
which allows us to conclude that the TDOF of the syste
become very slow in the vicinity of this temperature. This
also corroborated by our investigation of the intermedi
scattering function~coherent as well as incoherent! for which
we found that theira-relaxation time shows also a power la
with a critical temperature at 0.475@23#. The critical expo-
nentg of the power law forD is 2.20, which is in the range
of values found forg in simple supercooled systems. In pas
ing we mention that for this molecular system the dynam
of the TDOF is qualitatively similar to the one of simp
liquids @23# and therefore the molecular character of the p
ticles does not seem to affect the dynamics of the TD
significantly.

We now focus our attention on the ODOF. The first qua
tity we investigate is the correlation functionC1

(s)(t), which
was defined in Eq.~2!. In Fig. 2~a! we show this time corre-
lation function for all temperatures investigated. From th
figure we recognize that for high temperaturesC1

(s)(t) decays
quickly to zero. At intermediate temperatures it starts
show a weak shoulder, which on lowering the temperat
further becomes more pronounced. The time range for wh
this shoulder is observed coincides with the one in whic
plateau is observed in the intermediate scattering func
@23# and thus can be identified with theb-relaxation regime.

From this figure we also recognize that for intermedia
and low temperatures the shape of the curves in thea-
relaxation regime seems to be almost independent of t
perature, i.e., that the so-called time-temperature superp
tion principle ~TTSP! holds @see Eq. ~10!#. In order to
investigate this point closer we plot in Fig. 2~b! the same
curves versus the rescaled timet/t1

(s)(T), wheret1
(s)(T) is

the a-relaxation time. We definet1
(s)(T) to be the time it

takes the correlation function to decay toe21 of its initial
value. From this figure we recognize that the TTSP does
hold very well, in that the slope of the curves att/t1

(s)

3(T)51.0 changes significantly even at low temperatur
Thus we conclude that for this type of correlation function
the ODOF the TTSP does not hold very well, which is
contrast with the behavior of the TDOF of simple liquid
@14,15# and of the present system@23# as well as forC1

(s)

3(t) for the methanol model of Sindzingre and Klein@17# or
the OTP model studied by Wahnstro¨m and Lewis@19#. We
also note that defining thea-relaxation timet1

(s)(T) in a
different way, namely, by the time it takes the correlati

s
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function to decay to 10% of its initial value, or by using a
with a Kohlrausch-Williams-Watts function~which gives a
very good fit to the curves!, does not change this conclusio
since the TTSP does not hold with these definitions oft1

(s)

either. For example, we find that the Kohlrausch exponenb
depends on temperature forC1

(s) ~changing from values
around 1.0 at high temperatures to 0.87 forT50.7 and to
0.48 for T50.477!, whereas it is, at low temperature, co
stant to within the noise forCl

(s) with l>2 @36#. The reason
why, in the present system, the TTSP does not hold, whe
it seems to hold very well for the more complex molecul
is, at the moment, not clear. Itmight be that in our case the
coupling between the TDOF and the ODOF is weaker th
in the other cases, but further investigations on this point
needed.

Next we investigate the time and temperature depende
of C2

(s)(t) @see Eq.~2!#, which is shown in Fig. 3. From Fig
3~a! we see thatC2

(s)(t) decays qualitatively similarly to
C1

(s)(t) @Fig. 2~a!#. For the former, however, the height of th
shoulder is lower than the one inC1

(s)(t), which is reason-
able since, to a first approximation, this height is given
the value of the second Legendre polynomial evaluated a
height of the shoulder inC1

(s) @see Eq.~2!#. Note that this
height is a measure of the corresponding nonergodicity

FIG. 2. Time dependence ofC1
(s) @see Eq.~2!# for all temp-

eratures investigated versus~a! time t and ~b! rescaled timet/
t1

(s)(T), wheret1
(s) is thea-relaxation time.
as
,

n
re

ce

y
he

a-

rameterf l
c5 limt→` Cl(t) at Tc .

Since the areas under thea peak and under the remainin
part of the spectrumx l9 ~i.e., the critical decay and the mi
croscopic peak! are related tof l

c and to 12 f l
c , respectively,

our result suggests that the minimum between the two pe
is less pronounced forx19 than for x29 , provided that the
width of the microscopic peak is about the same forl 51 and
l 52. This could be the reason why the detection of t
minimum is so difficult in dielectric measurements, i.e.,l 51,
whereas it was readily found in light scattering experimen
These arguments recently were also put for the indep
dently by Lebonet al. @37#.

From Fig. 3~b! we recognize that for this correlation func
tion the TTSP holds well for times larger thant2

(s)(T), the
a-relaxation time forC2

(s)(t), but that for shorter times quite
significant discrepancies are observed, as it was the cas
C1

(s) . Thus we come to the conclusion that the relaxat
behaviors ofC1

(s) andC2
(s) are qualitatively different.

Since the time dependence ofC1
(s) seems to differ from

the one ofC2
(s) , we have also studied the one ofCl

(s) for
l 53,...,6, which, for the lowest temperature investigat
are show in Fig. 4. From this figure we recognize that~i! the
height of the plateau decreases with increasingl , which can
be rationalized by the same reasoning given above,~ii ! with

FIG. 3. Time dependence ofC2
(s) @see Eq.~2!# for all tempera-

tures investigated versus~a! time t and ~b! rescaled timet/
t2

(s)(T), wheret2
(s) is thea-relaxation time.
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increasingl the correlators seem to show more and mor
logarithmic time dependence in theb-relaxation regime, and
~iii ! the correlators for odd values ofl decay faster than the
ones for even values ofl . This effect can be understood b
taking into account that at low temperatures the molecu
make jumplike orientational flips of 180°, described in mo
detail below, which lead to a relaxation inCl

(s) if l is odd, but
do not affect the correlators with even values ofl . Further-
more, we have found that with increasing value ofl the
TTSP holds better and better@36#, thus showing that from a
qualitative point of view the correlators for the ODOF b
come more similar to the ones of the TDOF. ForC6

(s) , e.g.,
the TTSP holds very well@see Fig. 4~b!#.

In addition to the self-partsCl
(s) , we have also determine

the time dependence ofC1(t), one of the collective correla
tion functions of the ODOF@see Eq.~1!#. This correlation
function is shown in Fig. 5 for all temperatures investigat
Although the noise in the data is significantly larger than
one inC1

(s) , as it is often the case for collective quantitie
we can clearly recognize that the time dependence ofC1 is
qualitatively similar to the one ofC1

(s) and that the TTSP~cf.
Fig. 5! does not seem to hold. Furthermore, we note th
e.g., at the lowest temperature and fort5103 time units,
C1

(s)(t) is about 25% larger thanC1(t), which demonstrates

FIG. 4. ~a! Time dependence ofCl
(s) for l 51,...,6 forT50.477,

the lowest temperature investigated.~b! Time dependence o
C6

(s)(t) for all temperatures investigated.
a

s

.
e
,

t,

that the cross terms inC1(t) should not be neglected, at lea
not in the strongly supercooled regime.

From Figs. 2~a!, 3~a!, and 5~a! we recognize that with
decreasing temperature the relaxation of the ODOF slo
down dramatically. Thus it is interesting to investigate t
temperature dependence of the relaxation times. Since
have found that the diffusion constant~Fig. 1! as well as
the a-relaxation times of the TDOF@23# show a power-law
dependence on temperature, with the same critical temp
ture Tc , we checked whether also thea-relaxation times
t1

(s)(T), t2
(s)(T), andt1(T) can be fitted with such a powe

law ~with the sameTc50.475!. That this is indeed possible
for about two orders of magnitude int is demonstrated in
Fig. 6, where we show these quantities versusT2Tc in a
double logarithmic plot. As it was the case for the diffusio
constantD, the values oft for the two lowest temperature
deviate from the power laws since also here the relaxatio
too fast, which is likely to be related to hopping process
Thus we conclude that these processes affect the ODOF

From Fig. 6 we also note that the fitted power laws do n
extend to such high temperatures as they did in the cas
the diffusion constant. This is evidence that, similar tosimple
liquids, the presence of a large temperature range for wh
such a power law is observed is rather the exception than
rule. The critical exponentsg of the three power laws@see

FIG. 5. Time dependence ofC1 @see Eq.~1!# for all tempera-
tures investigated versus~a! time t and ~b! rescaled timet/t(T),
wheret is thea-relaxation time.
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5456 56STEFAN KÄMMERER, WALTER KOB, AND ROLF SCHILLING
Eq. ~8!# are 1.66, 2.42, and 1.52 fort1
(s) , t2

(s) , andt1 . Since
the critical exponent for the diffusion constant is 2.20,
thus find that the four critical exponents are all different fro
each other, which disagrees with the prediction of MCT
simple liquids. However, if we determine the critical exp
nents forCl

(s) for l 53,...,6, we find the values 2.25, 2.7
2.55, and 2.80. These values have to be compared with
critical exponent for the TDOF, which is around 2.6@23# and
thus quite close to the one ofCl

(s) for the larger values ofl .
Thus this is more evidence that the latter correlators beh
qualitatively similarly to the ones for the TDOF.

We also mention that a power-law fit tot l
(s) andt1 , with

the critical temperatureTc as a free parameter, leads to
slightly improved fit. The optimal values of the critical tem
perature were to within 2% equal to 0.475, the value ofTc

from the diffusion constant. Thus we find that the ODO
measured byCl

(s) andC1 , would indeed freeze very close t
Tc50.475 if the hopping processes were absent.

Furthermore, we note that a fit oft1
(s) and t2

(s) with the
popular Vogel-Fulcher lawA exp@B/(T2T0)# also works re-
markably well. In particular, we find that this functional for
is able to fit the data well atall lower temperatures, i.e., als
the data points at the two lowest temperatures, for which
power law fails to fit the data. Thus we conclude that if se
as a mere fitting function, the Vogel-Fulcher law gives
better fit than the power law. However, the Vogel-Fulch
temperatureT0 was determined to be 0.328 and 0.386
t1

(s) and t2
(s) , respectively. Thus we find that the two tem

peratures differ by about 20%, hence indicating, that, acco
ing to the Vogel-Fulcher fits, there is no unique temperat
at which the system ceases to relax. Therefore, this sort o
is, from a physical point of view, less appealing.

The a-relaxation timest l
(s)(T) and t1(T) are analogous

quantities to thea-relaxation timet(T) of the intermediate
scattering function. Since in supercooled liquids the tempe
ture dependence oft and of the diffusion constant can b
different ~see, e.g., Refs.@15, 21#! it is interesting to inves-
tigate also therotational diffusion constantDr and compare

FIG. 6. a-relaxation timet1
(s) ~squares!, t2

(s) ~diamonds!, andt1

~circles! versus temperature. Solid lines are fits with a power la
Also included is the inverse of the rotational diffusion constantDr

~triangles!. The dashed lines are guides to the eye.
r
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it with the temperature dependence of the relaxation tim
t1

(s) andt2
(s) .

As already mentioned in Sec. II, the calculation ofDr is
numerically difficult when one uses a Green-Kubo relatio
Instead, it is much simpler to computeDr from the Einstein
relation given by Eq.~7!. In Fig. 7 we show the time depen
dence of the mean squared displacement of the anglesfW (t),
i.e., ^@DfW (t)#2&5^ufW n(t)2fW n(0)u2&, wherefW n(t)2fW n(0)
is defined in Eq.~6!.

From this figure we recognize that, analogous to the m
squared displacement@23#, ^@DfW (t)#2& shows at short times
a power law with exponent 2.0, which corresponds to
free rotational motion of the molecules. For high temperat
this type of motion crosses over directly into a diffusion
behavior, i.e.,̂ @DfW (t)#2& is given by a power law with ex-
ponent 1.0. This is not the case for the low temperatu
where the time regimes of the free rotation and the one of
diffusive behavior are separated by a time regime where
increase of̂ @DfW (t)#2& is slower than diffusive. The time a
which this subdiffusive behaviorstarts is essentially the
same as the one in which also the mean squared disp
ment ~MSD! of the particles starts to show a subdiffusiv
behavior@23#. In contrast to this, the time where^@DfW (t)#2&
starts to show the diffusive behavior is, at the lowest te
peratures, significantly less~by about 1–2 decades! than the
times where the MSD starts to show the diffusive behav
Thus, despite the qualitative similarity of the time depe
dence of^@DfW (t)#2& and the MSD, there are some distin
differences between the two quantities and thus we conc
that the plateaulike region in̂@DfW (t)#2& shouldnot be iden-
tified with the b-relaxation regime. We will return to this
point later.

From the time dependence of^@DfW (t)#2& it is simple to
computeDr @see Eq.~7!#. Note that, becausê@DfW (t)#2&
reaches its diffusive limit at shorter times than the MS
does, the rotational diffusion constant can be calculated r
ably from a relatively short run, an observation of which w
will make use of below.

In Fig. 8 we show the temperature dependence ofDr in an
Arrhenius plot. In order to facilitate the comparison betwe

.
FIG. 7. Time dependence of^„DfW (t)…2& @see Eq.~6!# for all

temperatures investigated.
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56 5457DYNAMICS OF THE ROTATIONAL DEGREES OF . . .
the rotational and translational diffusion constant, we ha
included the latter in the figure as well.~Note that we have
multiplied D by 15 in order to makeD and Dr coincide at
high temperatures. Also it should be remembered thatD and
Dr have different units.! We see that for temperatures les
than 2.0 the data~diamonds! can be fitted well with an
Arrhenius law~solid straight line!. Furthermore, we recog-
nize that the temperature dependence ofDr follows the one
of D for high temperatures, but that when the system start
become supercooled, the curve forD drops significantly be-
low the one forDr . Thus we find that at high enough tem
peratures the ODOF and the TDOF couple strongly enou
to show the same temperature dependence ofDr and D,
which is in agreement with the well-known Stokes-Einste
and Stokes-Einstein-Debye relations. For lower temperatu
D shows the power law discussed in Fig. 1, the reason
which are likely the mode-coupling effects. In contrast
this, Dr shows an Arrhenius law from which we can con
clude that the rotational motion of the molecule is an ac
vated process. We will study this process in more detail
low.

We have also checked whether at low temperatures,
2.0>T>0.477, the temperature dependence ofDr can be
fitted well by a power law and found that this is indee
possible with a critical temperature around 0.38~dashed line
in Fig. 8!. This temperature is significantly lower than th
critical temperatureTc we found for the diffusion constant
the intermediate scattering function, and the relaxation tim
of Cl

(s) and C1 , which was 0.475. In order to discriminat
between the two functional forms~Arrhenius and power law!
we made use of the observation described above that
rotational diffusion constant can be determined from a re
tively short run~compared to thea-relaxation times of the
TDOF!; see Fig. 7. Thus we used the temperature dep
dence of the density~obtained from our equilibrated runs a
temperaturesT>0.477! to estimate the volume of the system
at T50.41. We then set up the volume of the system su
that its density corresponded to this extrapolated value

FIG. 8. Temperature dependence of the rotational diffusion c
stantDr ~diamonds! and of the translational diffusion constantD
~circles!. D is multiplied by 15 so that the two curves coincide
high temperatures. The straight solid line is an Arrhenius behav
and the dashed line is a power law with a critical temperature 0.
The dotted lines are guides to the eye.
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quenched the system toT50.41. After allowing the system
to relax for 2.03105 time units we started to measure th
time dependence of̂(DfW )2& for three independent runs
Note that this time is clearly not sufficient to equilibrate t
system with respect to its TDOF, but it should at least all
the system to get reasonably close to its equilibrium stat
this temperature. The so-obtained^@DfW (t)#2& is included in
Fig. 7 as well~bottom curve!. We see that even at this low
temperature the diffusive rotational behavior can be obser
on the time scale of our simulation. Thus we could extr
the corresponding value ofDr and have included it in Fig. 8
as well. This data point lies reasonably close to an extra
lation for the previously fitted Arrhenius law and is com
pletely off the curve for the power law.~The fact that this
point lies slightly above this Arrhenius law can be unde
stood by taking into account that at this temperature
TDOF are not quite relaxed. Hence it can be expected tha
the relaxation times are smaller than they would be in
equilibrated sample and that therefore the measured diffu
constant is too large@38#.! Thus we conclude that the rota
tional diffusion constant, as defined in Eq.~7!, follows an
Arrhenius law even at very low temperatures and that i
very unlikely that its temperature dependence is given b
power law.

In Fig. 6 we have seen that the relaxation times of
orientational correlation functions show a power-law dep
dence on temperature and that the critical temperatureTc is
very close to the one of the translational diffusion constan
the one of the intermediate scattering function. From Fig.
is recognized, however, that the rotational diffusion const
Dr doesnot show any exceptional temperature depende
in the vicinity of Tc @to see this we have included in Fig.
also the inverse ofDr ~triangles! and it can clearly be see
that no power law is observed for this quantity#. At first view
these two facts seem to contradict each other, but as we
show now this is not the case at all. In order for the tim
correlation functionsC1

(s) and C2
(s) to decay to zero it is

necessary that the orientation of the molecules changes b
angle on the order of 180° and 90° in the case ofC1

(s) and
C2

(s) , respectively. In order to undergo such a large cha
of orientation, a molecule has to wait until the cage form
by the surrounding molecules breaks up. The time for this
happen is related to the relaxation time of the translatio
degrees of freedom and thus we find that the relaxation tim
of C1

(s) and C2
(s) become very large when the temperatu

approachesTc .
For the rotational diffusion constant the situation is diffe

ent. As can be seen from Eqs.~6! and~7!, Dr remains finite
as long as there is a possibility thatuDfW (t)u2 increases~lin-
early! with time. At low temperatures a molecule will not b
able to make large changes of its orientation, but a sm
librational ~tumbling! motion is still possible~for the TDOF
this corresponds to the rattling of the particles in their cag!,
which was nicely demonstrated by Renneret al. for a system
of infinitely thin rods on a cubic lattice@31#. It is not hard to
see that this librational motion gives rise to a diffusive mov
ment of thez component of the vectorfW and hence to a finite
value ofDr ~here thez axis is defined by the molecular ax
of the molecule at time zero!.

In order to see this effect more clearly we have inves

-
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5458 56STEFAN KÄMMERER, WALTER KOB, AND ROLF SCHILLING
gated the orientational dynamics of the molecules atT50.41
in more detail. At this low temperature the orientation
most of the molecules stays for a long time in the vicinity
the direction it was at timet50. Thus we determined th
mean orientation of thez axis of each molecule by averagin
its direction over a period of 43103 time units. Note that
such a mean direction makes only sense if the orientatio
the molecule does not change significantly. Hence we
restrict the following analysis to only those molecules
which the maximum deviation from this mean axis was le
than 45°. In the considered time window this is the case
74% of the molecules. Having determined the meanz axis,
we chose anx and ay axis perpendicular to thez axis and
computed the time dependence of^@Dfa(t)#2&5^ufa(t)
2fa(0)u2&, with aP$x,y,z%. The time dependence of thes
three functions are shown in Fig. 9. We see that^@Dfz(t)#2&
is indeed significantly larger than̂ @Dfx(t)#2& and
^@Dfy(t)#2&. This is in accordance with the picture put for
above that the orientational diffusion of the molecules in
z direction is much larger than the one in thex andy direc-
tions. We also recognize that the latter are notcompletely
suppressed, which is likely due to the fact that the cage
which the molecule sits is still slowly changing with time.
is important to notice that similar arguments do not hold
the TDOF. The rattling of the center of mass within a cage
isotropic on the average. It is the direction of the molecu
axis that breaks this isotropy on a ‘‘mesoscopic’’ time sca

The fact that at low temperatures the molecules perfo
for a long time a librational motion can also be demonstra
nicely by considering the autocorrelation functionC2(t) of
the angular velocityvW (t); see Eq.~4!. As illustrated by Ren-
neret al., C2(t) is expected to show a plateau with a heig
equal to or less than 0.25 if the motion of the molecule is
a librational type@31#. In Fig. 10 we show the time depen
dence ofC2 for all temperatures investigated. From this fi
ure we recognize that theshort time relaxation time ofC2
decreaseswith decreasing temperature and that at low te
peratures the correlation function shows indeed a platea

A different way to study the orientational motion of th
molecules is to investigate the time dependence of the di
bution functionG(u,t), which is defined analogously to th

FIG. 9. Time dependence of̂ (Dfx)
2&, ^(Dfy)

2&, and

^(Dfz)
2& and their sum̂(DfW )2& @see Eq.~6!# for T50.41. See text

for details.
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self part of the Van Hove correlation function, i.e.,

G~u,t !5
1

N sin u (
i 51

N

^d„u2cos21@uW i~ t !•uW i~0!#…&,

~11!

whereuW i(t) is the unit vector parallel to the axis of molecu
i at timet. In Fig. 11 we showG(u,t) for different tempera-
tures. Note thatG(u,t) is defined such that for long times
approaches 1.0 for all values ofu. From Fig. 11~a! we rec-
ognize that forT52.0 this function decays monotonically i
u for all times. This changes when the temperature is
creased toT50.63@Fig. 11~b!# since then, e.g., the curve fo
t577.7~bold dashed curve! shows a small additional peak a
180° that is separated from the main peak at 0° by a sha
minimum around 120°. This additional peak stems from m
ecules that underwent a rotation of 180°. This feature
comes much more pronounced when the temperature is
creased further toT50.477 @Fig. 11~c!#. The mentioned
minimum now exists for a large time range before it starts
disappear on the time scale of thea relaxation. At even
lower temperature,T50.41 @Fig. 11~d!#, the minimum does
not show any sign of filling up at all on the time scale of o
simulation. However, we see that the peak at 180° is s
observable, which means that a significant fraction of
molecules made a flip of 180°.

To study these 180° jumps on a more microscopic lev
we have also investigated the time dependence of the angu
of individual molecules. From such studies we found that
low temperatures, i.e.,T50.41, thez axis of the molecules
stays for a long time in the vicinity of its orientation att50
and then undergoesrelativelyquickly a flip of 180°~see Fig.
12 for three representative trajectories!. Qualitatively similar
results have been reported in Ref.@17#. The typical time for
this flip is around 50 time units, but also faster@see, e.g., Fig.
12~b!# and slower transitions can be observed. This transit
time is relatively long compared to the time scale of a~trans-
lational! vibration of a molecule in its cage, which is on th
order of two time units. Therefore, we conclude that suc
180° flip is not a fast process in which the molecule ov
comes one barrier in a quasiballistic way, but rather the s

FIG. 10. Time dependence of the autocorrelation functionC2(t)
of the angular velocities@see Eq.~4!# for all temperatures investi-
gated.
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FIG. 11. FunctionG(u,t) for different times and temperatures. Consecutive curves are spaced by about a factor of 2 in time. Th
curves correspond to a time of approximately 0.64. The insets show the same curves on an expanded scale.~a! T52.0, ~b! T50.63, ~c!
T50.477, and~d! T50.41.
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of a quick succession of smaller jumps. Finally, we ment
that the molecules do not show this sort of little jump eith
before or after they undergo a 180° flip, which shows t
these little jumps are associated with the flips.

Finally, we note that the observed 180° jumps resem
the ones found in mixed crystals. For instance, the CN m
ecule in KCNxBr12x undergoes a glass transition at a te
peratureTg , where thequadrupolar degrees of freedom
freeze into an orientational glass, whereas thedipolar order,
i.e., the head-tail dynamics, remains ergodic@25#. These
180° jumps of CN belowTg also exhibit Arrhenius behavio
@25# and are thus similar to the dynamics of our diatom
molecules.

V. CONCLUSION

The main motivation of this paper has been to investig
the dynamics of the orientational degrees of freedom i
supercooled molecular liquid. This was done by means o
molecular-dynamics simulation for a very simple molecu
system, a liquid of diatomic, rigid molecules.

The first question we addressed was how the translati
and the orientational degrees of freedom slow down if
temperature is decreased and the system becomes str
supercooled. Since the mode-coupling theory is presently
n
r
t

le
l-
-

e
a
a
r

al
e
gly

he

only microscopic theory that predicts, in its idealized ve
sion, a glass transition at a temperatureTc , we have checked
the consistency of our results with the predictions of t
theory.

In thea-relaxation regime MCT predicts in the vicinity o
Tc a power-law behavior for the temperature dependenc
the corresponding relaxation times and the diffusion c
stants@cf. Eqs. ~8! and ~9!#. We find that the translationa
diffusion constantD as well as the relaxation timest for the
orientational correlatorsCl

(s) andC1 can indeed be fitted by
a power law and that the transition temperatureTc is
0.47560.005. This fit describes the data forD and t very
well for about four and two decades, respectively. The f
that asinglecritical temperature exists is consistent with t
molecular MCT@27,28#. Different transition scenarios with
more than one critical temperature can only exist for line
molecules with head-tail symmetry, which is not the case
our molecule.

The exponents of the power laws are not universal,
vary between 1.52 and 2.42. The universality of these ex
nents for thea relaxation of various correlators, as predict
by MCT for simple liquids, is based on the factorizatio
theorem@1#. It is expected that formolecular liquids the
same reasoning can be applied and that therefore MCT
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5460 56STEFAN KÄMMERER, WALTER KOB, AND ROLF SCHILLING
dicts also for such systems the universality ofg @27#. The
fact that this is in contrast to our findings is, however, pro
ably not a consequence of the molecular character of
system since it has been shown that also foratomicsystems,
e.g., the diffusion constant and thea-relaxation times do no
have the same exponent@15#. Thus is seems that with regar
to this, the theory is not as reliable as with regard to its ot
predictions. The reason why this is the case is, howe
presently not understood.

The next interesting result is that the rotational diffusi
constantDr , as defined by Eq.~7!, shows a significantly

FIG. 12. Time dependence of the angleu of an individual mol-
ecule in the time range where the molecule makes a 180° flip. T
representative curves are shown.T50.41.
-
ur

r
r,

different temperature dependence from the quantities
discussed. For high temperatures,Dr andD are proportional
to each other, in accordance with the hydrodynamic Stok
Einstein and Stokes-Einstein-Debye relations. However,
low a temperatureT* '1.4, which is far aboveTc , D is
described well by the mentioned power law, whereasDr
shows an Arrhenius dependence. We find thatT* is the tem-
perature at which the cage effect starts to become import
i.e., the system begins to be supercooled. This can be
ferred from the fact that atT* , ^Dr 2& and ^(DfW )2& start to
show anomalous diffusion behavior at intermediate tim
Thus we conclude that the breakdown of this aspect of
hydrodynamic equations and the onset of the cage effec
supercooled liquids occur at the same temperature.
stress, however, that the different temperature dependen
D andDr belowT* is not related to the similar phenomeno
observed in experiments@39#. In these experiments the relax
ation of the orientational vectoruW n(t) of thenth molecule is
studied. The measured quantity corresponds to the corre
Cl

(s)(t) @see Eq.~2!#. In most theoretical approaches the r
tational dynamics is described by a Smoluchowski equa
in which it is assumed that the angular velocities can
eliminated adiabatically. This crucial assumption, as well
the subsequent linearization, leads to anexponentialrelax-
ation with ana-relaxation timet l

(s) that is proportional to
1/Drl ( l 11) @40#. Using this relationship,Dr can then be
deduced. Our results at lower temperatures are not consi
with this theoretical result because~i! Dr(T) is not propor-
tional to @t l

(s)(T)#21 and~ii ! t1
(s)(T)/t2

(s)(T)Þ3. The reason
for this is the nonexponential relaxation we have found
which the proportionality ofDr and (t l

(s))21 and the relation
t1

(s)/t2
(s)53 are not granted.

In the vicinity of Tc the data forD andt l
(s) deviate from

the power law observed at intermediate temperatures.~The
same deviations are found for thea-relaxation times of the
coherent and incoherent intermediate scattering function
the center of the molecules@23#.! This is likely due to the
hopping processes, which restore ergodicity even at low t
peratures. If hopping of the center of mass of the molecu
becomes important at lower temperatures, this should
seen in the self part of the Van Hove correlation functi
Gs(r ,t) ~see, e.g., Ref.@13#!. Surprisingly, even at the lowes
temperatureT50.477,Gs(r ,t) does not show any sign of
second~smaller! peak at a distancer'1, which corresponds
to the mean distance between two neighboring molecu
@23#. That D(T) nevertheless deviates from a power law
low T may be explained by the jumplike reorientations of t
ODOF, which we have identified in the distribution functio
G(u,t) as 180° flips. These jumps, which were also obser
in earlier molecular-dynamics simulations@16–18#, may lead
to a local ‘‘melting’’ of the neighborhood of a molecule tha
just jumped, thereby allowing a translational diffusion wit
out the molecule having to jump over the walls of its cag
The rotational diffusion measured byDr is an activated pro-
cess, at least for lower temperatures. ItsT dependence can b
described by an Arrhenius law even for a temperat
T50.41 that is far belowTc . This Arrhenius dependence i
somewhat reminiscent of the temperature dependence o
Johari-Goldsteinb peak in the dynamic susceptibility@41#.
Since we have shown that the Arrhenius dependence ofDr is
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related to the librational motion of the molecules, one th
might speculate as to whether the dynamics leading to thb
peak are indeed related to such librations. However, in o
to decide this one would have to investigate the equilibri
dynamics of the systems at significantly lower temperatu
than is presently possible.

Regarding the time dependence of the various correla
at low temperatures, we have found a two-step relaxa
process, with a strongly nonexponential behavior, for all
them. This is in agreement with the results in Refs.@16–19,
21# and also with MCT. However, in contrast to the pred
tion of MCT, the time-temperature superposition princip
does not seem to work very well for the orientational co
elators investigated here, although it does so forCl

(s) with
l>3 and for the correlators of the TDOF. This shows th
u

ng

.

ov

U

s,
-

en

s.
s

er

s

rs
n
f

-

,

despite the fact that the temperature dependence of the r
ation times of the TDOF and of the ODOF are very simila
the relaxation dynamics of the two types of correlation fun
tions is, if l 51 or l 52, qualitatively different. Finally, we
mention that at low temperaturesC1

(s)(t) and C1(t) differ
from each other in thea-relaxation regime by about 25%
which demonstrates that the cross terms inC1(t) should not
be neglected.
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