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Dynamics of the rotational degrees of freedom in a supercooled liquid of diatomic molecules
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Using molecular-dynamics computer simulations, we investigate the dynamics of the rotational degrees of
freedom in a supercooled system composed of rigid, diatomic molecules. The interaction between the mol-
ecules is given by the sum of interaction-site potentials of the Lennard-Jones type. In agreement with mode-
coupling theory(MCT), we find that the relaxation times of the orientational time correlation functions
ci¥(t), cP(t), and C,(t) show at low temperatures a power law with the same critical temperature
which is also identical to the critical temperature for the translational degrees of freedom. In contrast to MCT,
we find, however, that for these correlators the time-temperature superposition principle does not hold well and
also the critical exponent depends on the correlator. F@[fs) with | =3,...,6this principle does hold. We also
study the temperature dependence of the rotational diffusion cori3taabd demonstrate that at high tem-
peraturesD, is proportional to the translational diffusion constéhtand when the system starts to become
supercooled the former shows an Arrhenius behavior, whereas the latter exhibits a power-law dependence. We
discuss the origin for the difference in the temperature dependeride(af the relaxation times 01?,(3)) and
D, . Finally, we present results that show that at low temperatures 180° flips of the molecule are an important
component of the relaxation dynamics for the orientational degrees of fre¢8a®63-651X97)03411-9

PACS numbgs): 61.20.Ja, 61.43.Fs, 02.70.Ns, 64.70.Pf

I. INTRODUCTION these ODOF can be measured, e.g., by dielectric spectros-
copy, light scattering, and NMR. For the molecular glass
In the past ten years mode-coupling the@ACT) [1-4]  former salol, e.g., it has been shown that MCT gives a sat-
has led to a strong interest in the phenomenon of the gladsfactory description of the relaxation behavior of this system
transition since this theory makes detailed predictions on thgg]. This conclusion seems to contradict the outcome of ex-
dynamics of glass formers in the vicinity of the glass transi-periments in which the dielectric response of this system was
tion and thus challenges the experimentalists to test theg@obed[7] because of the following fact: MCT predicts that
predictions. Starting from the microscopic equations of mo-or all observables that couple to the density fluctuations the
tion, MCT derives, by using certain approximations that areémaginary part of the corresponding susceptibility exhibits a
believed to be quite reliable faimpleliquids, an equation of minimum at the same frequenay;, if one is very close to
motion for the density correlator. One of the main results ofT. Light scattering experiments have shown that in salol
MCT is the existence of a dynamical transition at a temperathis minimum occurs at a frequency of about 7 GHz if
ture T., at which, in the so-called idealized version of the T=290 K [6]. However, Dixonet al. showed that at the
theory, the dynamics of the system undergoes a transitiosame temperature no such minimum is observed in the di-
from an ergodic T>T,) to a nonergodic behavioM T,) electric functione”(w) for frequencies up to 18 GHE7],
and which can be interpreted as a glass transition. Due to thus seemingly contradicting the conclusions of Réf.that
presence of ergodicity-restoring processes, commonly calleMCT gives a correct description of the dynamics of this sys-
“hopping processes,” most glass formers show, to a certainem. Similar conclusions were drawn for glycerol. However,
extent, deviations from the predictions of the idealizedin recent extensive dielectric measurements on glycerol this
theory since this version of MCT does not take into accounminimum was found and it was shown that the data can be
these sort of processes. In the extended version of the theodescribed by the3 correlator of MCT for simple liquids
hopping processes are taken care of and one finds that in ti8,9], although in this experiment the location of the mini-
vicinity of T, a crossover in the behavior of the dynamicsmum is indeed different from the one in the light scattering
can still be observed1,2,4. Many of the predictions of experiment. This could be due to at least two reasons. First,
MCT were confirmed by experiments and in numerical simuthe MCT equations fomolecularliquids might be signifi-
lations on various glass-forming systems. For reviews theantly different from those fosimpleliquids, hence leading
reader is referred to Refgl—5]. to different predictions. Second, the predictions of MCT for
In the real world most of the good glass formers mm@  simple liquids can be used, but corrections to the asymptotic
lecular systems. One of the important differences betweeraws of MCT have to be taken into account. These correc-
molecular systems and simple liquids is that the former havéions make the reduction theorem invalid and therefore the
orientational degrees of freedof®@DOF). The dynamics of location of the minimum depends on the observab@. We
also note that very recently evidence has been given that a
minimum exists ine”(w) for salol also[11]. However, its
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not settled and thus remains an interesting field of researcleently derived 27,28, they have not been analyzed in great
One possibility to gain some insight into the dynamics ofdetail so far. Since the structure of these equations is not
supercooled liquids is to perform molecular-dynamics comidentical_to. that for'simple _I.iquids, it is not obvious whether
puter simulations of such systenfd2]. Simulations of the predictions derived by Gze and collaboratorl-4,29
simple liquids have shown that this method can indeed béor MCT equations that apply to simple liquids are still valid.
very useful to understand the dynamics down to temperaThUS one of the main motivation of the present work is to
tures close td ., [13—15. Forsupercoolednolecular liquids, test whether these predictions hold also for the molecular
however, only few numerical simulation have been done s§YStém investigated here. .
far. Signorini et al. investigated the dynamics of the ionic '€ outline of our paper is as follows. In the next section
glass formefCaNOs),], JKNOsy s (CKN), where the NQ we define the various correlators and diffusion constants that
unit was treated as a rigid moIecl[IIaG] ana Sindzingre and we will study. In addition, we also summarize those results
Klein studied methandi17]. Orthoterpheny(OTP) was in- of MCT whose validity we will check for the present system.
vestigated by Lewis and Wahnstng 18,19, who modeled In Sec. Il the model and the details of the computer simu-
the molecule with a rigid isoscale triangle of Lennard-Joned2tion are presented. The results are given in Sec. IV and are
particles, and by Kudchadkar and Wié&0], who used an discussed in Sec. V where we also offer our main conclu-

18-site, three-ring model. Very recently Sciortiabal. pre- ~ S'ONS:

sented their results on supercoolegDHalso taken as a rigid

moleculd [21,22. In these papers a two-step relaxation pro- !l- CORRELATION FUNCTIONS AND PREDICTIONS
cess, as predicted by MCT, was observed for both the trans- OF MCT

lational and rotational degrees of freedom. But a more quan- |, s section we define the correlation functions that are

titative analysis in the framework of MCT was essentially gy,gie in this work and recapitulate some of the predictions
restricted to the translational degrees of freed@OF). In ¢ MCT. More details on MCT can be found in Refd~4].

particular, it does not become clear from these studies 1, study the static and dynamical properties of macro-
whether the ODOF freeze at the same temperature as @ sic systems wittN particles it is convenient to use cor-

TDOF do since no detailed analysis with respect to this pointg|ation functions. For the translational degrees of freedom it
was made(although very recently evidence was given thatis ¢ stomary to characterize the dynamics with the help of

for water the freezing temperatures of the ODOF and thgne \ian Hove correlation function or its space Fourier trans-
TDOF are very close togethg22]). The investigation of this ¢, the intermediate scattering function. For the rotational

thint Is Or.]ﬁ" fOf the ma;jr? r ?bjectivels offt?r(:eprtlasent'g work. dFordegrees of freedom convenient correlation functions are the
IS we Will Tocus on In€ ime scale of heretaxation and g, ctionsc,(t) andC{®(t), which are defined as

discuss our findings regarding the relaxation elsewhere
[23]. We also mention that in a very recent paper Ma and Lai 1

investigated the dynamics of the translational degrees of C'(t):N E (P)(G,(t)-0n(0))), 1=1 D
freedom for a dumbbell-shaped molecule and argued that the n.n’

molecular character leads to a decrease of the MCT param. 4 .o self-part

eter\ [24].
We note that the role of the ODOF was also studied for 1 N
quite different types of systems. For the so-called mixed CI(S>(t):N E (P,(Un(1)-Un(0))), 1=1. 2
n=1

crystals e.g., KBr_,K(CN),, where the isotropic bromide
is partly substituted by the linear molecule CN, which leads . . L
to a quencheddisorder, an orientational glass transition oc- €€ Pi(x) is the Legendre polynomial of ordérandd, is

curs. For more details the reader may consult the reviews b{)¢ normalized orientational vector of teth molecule.
Hochli et al. and Binder and Regd®5). The reader should hese orientational correlation functions are straightforward

note, however, that thesgystalline systems are very differ- generalizations of the intermediate scattering function to the

ent from the molecular liquids in which we are interested in2S€ Where also ODOF are present. More details on this
the present work. point are given in Ref[23]. The experimental relevance of

The molecular system we consider consists of moleculef® functionsC(t) is given by the fact that far=1 andl =2
in which two different atoms are connected rigidly. Apart they can be meas.ured in dielectric and Il_ght scattering ex-
from diatomic molecules with head-tail symmetry, this is thePeriments, respectively. We also note that !t is often assumed
simplestmolecular system one can choose. Although thdCf €9., Ref.[30] that the cross terms i€(t) can be
choice of a linear molecule is of course somewhat special, f€9lected. In that case the experiments would also yield in-
is nevertheless interesting to study the dynamics of such fprmation onC{¥. We will discuss this point below.
molecu|ar System in the Supercoo'ed regime in Order to In addition to the intermediate Scattering function or the
check whether even such a simple system shows the ph&orrelators given in Eqgstl) and (2), the dynamics of the
nomenon of a glass transition. Furthermore, the continuougystem can also be studied by means of the autocorrelation
rotational symmetry around the long axis of the moleculedunctions of the velocities;(t) of the particles
simplifies also the theoretical description of this system, as
compared to the molecules studied in Rdfs6—22, and
thus allows us to make a more stringent test of the theory.
Although the MCT equations for a diatomic molecule in a
simple liquid[26] and for molecular liquids have been re- or the corresponding one of the angular velocitiggt)

1 N
O(t)= 15 2 (Fa(t)-04(0)) )

n=1
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13 D(T)=(T=Te)?, 9
V()= 2 (Picosxy(1), 1=1, (4)
n=1 with the samey as in Eq.(8).

Finally, the theory makes the prediction that the correla-
tors should obey the so-called time-temperature superposi-
tion principle. This means that if a correlatg(t,T) is plot-
ted versus the reduced tinver(T), the curves corresponding
to the different temperatures fall, in tlerelaxation regime,

where a,,(t) is the angle betweey(t) and w,(0). It was
recently shown thaW,(t) is particularly useful to study the
freezing of the ODOK31]. Since the translational and rota-
tional diffusion constant® and D,, respectively, can be
obtained by means of a Green-Kubo relation from Egs. .
and (4), respectively, the significance of these time correla-0N & master curve, i.e.,
tion functions is obvious. -

In the strongly supercooled regini(t) and ¥,(t) ex- d(t,T)=o(t/7(T)), (10
hibit a negative, slowly decaying long time tail. This makes L. .
the nume?ical calculat?/on b )a/ngr frgom the Green-Kubo the shape of which is approximated well by a Kohlrausch-
relation a difficult task if the temperatures are low. There-Williams-Watts function, i.e., ¢(t/7)~A exd—(tU/7)"],
fore, it is customary to use the corresponding Einstein relawhere the amplitudé and the exponeng arenot universal,
tions, which are mathematically equivalent to the Greenl-€., ill depend ong.
Kubo identity. For the TDOM is then determined from the

mean squared displacement Ill. MODEL AND DETAILS OF THE SIMULATION
1 N The model we investigate is a one-component system of
D=lim BIN 2 (|XA(t) —Xn(0)]2). (5) rigid, diatomic molecules. Each molecule is composed of
t—o0 n=1

two different Lennard-Jones patrticles, in the following de-
. . . noted byA andB, which are separated by a distarccend

To obtain the analog to this equation for the ODOF we re-gach of which has the same massThe interaction between
place Xy(t) by the corresponding variablé,(t), which is  two molecules is given by the sum of the interaction between

defined as the four particles, which is given by the Lennard-Jones po-
. tential V,5(r) =4€,5{(0,5/1)?—(0,5/r)°, where a,B

b (1) — b (0)=Ad.(t :j dt’ o.(t'). 6 e{A,B}. The Lennard-Jones parameters are given by
¢n( ) ¢n( ) ¢n( ) 0 n( ) ( ) OaAp— U'AB::L.O, O'BB:O.95, EApA— EAB™ 10, andeBZO.S

) ) ] ~and were chosen such that the system did not show any sign
In analogy to Eq(5) we thus obtain the following Einstein of crystallization even at the lowest temperatures investi-

relation for the ODOF, gated here. In the following we will use reduced units and
L N oap as the uni; of Iengtheﬁé as the un_it of gnergysetting
D,=lim N E <|‘£n(t)_$n(o)|2>- 7) kg=1), and (‘TAAm/486{*A). as the unit of time. If the at- .
tow n=1 oms are argonlike, this time unit corresponds to approxi-
mately 0.3 ps.
Note that (Zn(t) is not bounded, in contrast tﬁn(t), The choice of the intramolecular distartd®etween the\

which is restricted to the surface of a unit sphere. This is th@nd B particles requires some consideration. On the one

. - ; hand,d has to be large enough to allow for a sufficiently
reason why a replacementxf(t) by u,(t) in Eq. (5) would
yield D :g P f(t) by un(t) a0 strong coupling between the translational and rotational de-
r . .
Let us now recapitulate those predictions of the idealized"€€S of freedom. On the other hand, it has to be so small

version of MCT that are relevant for the present work Morethat first the formation of liquid-crystalline structures is un-
details can be found in Ref&l—4]. The theory predicts that, !ikely [32J and that second the_ energy barrier involved in the
in the vicinity of the critical temperaturg,, all time corre- intersection of two molecules is so large that at the tempera-

lation functions¢(t) that couple to the density correlation gures anfj on thevt;mgz scaéllethoftthe sllmula;tlgrg .SUCh a cgossmg
function should show a two-step relaxation behavior, i.e., 0es not occur. WWe tound that a value ot U.5 1S a good com-
exhibit a plateaulike region when plotted versus the logaPf®MS€. : _ - .

rithm of time. The time window in whickb is in the vicinity In order to make the simulation more realistic we did it at

of this plateau is called th@-relaxation regime. The time Cconstant external pressupg,—1.0. For this we equilibrated

window in which the correlator falls below this plateau is the system in thNpT ensemble,_using the algorithm pro-
called thea-relaxation regime. posed by Andersel83] and by setting the mass of the piston

MCT predicts that upon approachifig from above, the to 0.05. The length of these equilibration runs always ex-
a-relaxation timer(T) diverges with a power law, i.e ceeded the typical relaxation time of the system at the tem-
T perature considered, which allows us to conclude that in the

(T)x(T-Tg) 7, (8) subsequent production runs we were investigatingetei-
librium dynamics of the system. After having determined
with a critical exponenty>1.5. Note that the values df,  from this equilibration run the appropriate density of the sys-
andy are predicted to be independent of the correlator. Furtem for the temperature of interest, we fixed the total density
thermore, the theory predicts that also the translational difto the so-obtained density and started a production run in the
fusion constanD shows in the vicinity ofT, a power-law  microcanonical ensemble using the rattle algorithd4].
behavior, i.e., Note that it is advisable to make the production run in the
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ied in Refs[16—2(0 and the range i explored in Ref[21]

was significantly smaller than the one considered here, it is at
the moment not clear whether the fact that the power law can
be observed over such an extended range is a peculiar-

ity of the present system or whether it is a general feature of
molecular systems.

From the figure we also note that at the two lowest tem-
peratures the diffusion constant is significantly higher than it
would be estimated from the power law that fits the data well
at higher temperatures. The reason for this are likely the
so-called hopping processg35], the contributions to the
relaxation that are not accounted for in fidealizedversion
of the MCT. Thus it can be expected that for such low tem-
peratures the predictions of this idealized version of the
theory are no longer valid.

The value of the critical temperatufig, is 0.475-0.005,

FIG. 1. Self-diffusion constar® versusT—T.. The solid line  which allows us to conclude that the TDOF of the system
is a fit with a power law with the exponent 2.20. The dashed line isbecome very slow in the vicinity of this temperature. This is
a guide to the eye. also corroborated by our investigation of the intermediate

scattering functiorfcoherent as well as incohergfdr which
microcanonical ensemble if one wants to investigate the dywe found that their-relaxation time shows also a power law
namics of the system, since the algorithms used for constantith a critical temperature at 0.4723]. The critical expo-
pressure simulations introduce an artificial dynamics thahenty of the power law foD is 2.20, which is in the range
might lead to unphysical results. The step size we chose wasf values found fory in simple supercooled systems. In pass-
0.01 for the higher and 0.016 or 0.02 for the lower temperaing we mention that for this molecular system the dynamics
tures. For runs shorter or equal to X.40° time units these of the TDOF is qualitatively similar to the one of simple
step sizes are sufficiently small to allow one to neglect thdiquids[23] and therefore the molecular character of the par-
drift in the total energy during the runs. This is not the caseticles does not seem to affect the dynamics of the TDOF
for the long runs at the two lowest temperatures, which hagignificantly.
lengths of 3.0x10° and 4.0x10° time units, respectively We now focus our attention on the ODOF. The first quan-
(=1.5x10" and 2.0< 10" time stepg During these runs the tity we investigate is the correlation functi€®®(t), which
value of the total energy was reseted periodicédigout 30  was defined in Eq(2). In Fig. 2@ we show this time corre-
times during the whole ryrto its value at the start of the run |ation function for all temperatures investigated. From this
by rescaling the velocities of all the particles appropriately figure we recognize that for high temperatu@g(t) decays
Since this interference with the dynamics is only very weakquickly to zero. At intermediate temperatures it starts to
it can be expected that the final result will essentially beshow ‘a weak shoulder, which on lowering the temperature
independent of it. o further becomes more pronounced. The time range for which

The temperatures we investigated dre:5.0, 3.0, 2.0, thjs shoulder is observed coincides with the one in which a
1.4,1.1,0.85, 0.70, 0.632, 0.588, 0.549, 0.520, 0.500, 0.489jateau is observed in the intermediate scattering function
and 0.477. The total number of molecules was 500, and 23] and thus can be identified with th@relaxation regime.
order to improve the statistics of the results we averaged at From this figure we also recognize that for intermediate
each temperature over at least eight independent runs. and low temperatures the shape of the curves in dhe

relaxation regime seems to be almost independent of tem-

IV. RESULTS perature, i.e., that the so-called time-temperature superposi-
I;ion principle (TTSP holds [see Eq.(10)]. In order to
investigate this point closer we plot in Fig(k? the same

Before we start to present the results on how the ODO
freezes, it is useful to investigate the dynamics of the TDOF . s s :
since this allows us to estimate the temperature range itﬁurves versqs th? rescaled tlr.'de-(%s))(T), where T(l)(T) 'S,
which the system is supercooled. Therefore, we computeH'® @-Telaxation time. We define;”(T) toffe the time it
from the mean squared displacement of the center of thikes the correlation function to decay o™ of its initial
molecules the translational diffusion const@nt MCT pre- value. From this flgure we recognize that the TTSP does not
dicts that, in the vicinity of the critical temperatufe, the ~ hold very well, in that the slope of the curves gltr{”
diffusion constant will show a power lajsee Eq(9)]. Thus  <(T)=1.0 changes significantly even at low temperatures.
we fitted our data foD with such a law, using, as a fit Thus we conclude that for this type of correlation function of
parameter. In Fig. 1 we show the diffusion constant versush® ODOF the TTSP does not hold very well, which is in
T—T. in a double logarithmic plot. Also included is the fit contrast with the behavior of the TDOF of simple liquids
with the power law of Eq(9). We recognize that this fit is [14,15 and of the present systef@3] as well as forC{”
very good for a surprisingly large range ih and D. In X (t) for the methanol model of Sindzingre and Kl¢itv] or
particular, this range is significantly larger than the onethe OTP model studied by Wahnstnoand Lewis[19]. We
found for the atomic Lennard-Jones systg, 15. Since no  also note that defining the-relaxation time#{¥(T) in a
analogous analysis was done for the molecular systems studifferent way, namely, by the time it takes the correlation
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FIG. 2. Time dependence @{’ [see Eq.(2)] for all temp- FIG. 3. Time dependence & [see Eq(2)] for all tempera-

eratures investigated versiia) time t and (b) rescaled timet/

: : _ tures investigated versu&) time t and (b) rescaled timet/
#9(T), where{¥ is the a-relaxation time.

79(T), wherer is the a-relaxation time.

function to decay to 10% of its initial value, or by using a fit rameterf;=1lim,_,.. C(t) atT,.
with a Kohlrausch-Williams-Watts functiofwhich gives a Since the areas under thepeak and under the remaining
very good fit to the curvésdoes not change this conclusion, part of the spectruny, (i.e., the critical decay and the mi-
since the TTSP does not hold with these definitions—@f croscopic peakare related td} and to 1-f’, respectively,
either. For example, we find that the Kohlrausch expoent our result suggests that the minimum between the two peaks
depends on temperature fcﬁ(f‘) (changing from values is less pronounced fox] than for x5, provided that the
around 1.0 at high temperatures to 0.87 To£0.7 and to  width of the microscopic peak is about the samel fell and
0.48 for T=0.477, whereas it is, at low temperature, con- |=2. This could be the reason why the detection of this
stant to within the noise foE(® with 1=2 [36]. The reason Mminimum is so difficult in dielectric measurements, ile=,1,
why, in the present system, the TTSP does not hold, whereaghereas it was readily found in light scattering experiments.
it seems to hold very well for the more complex molecules,These arguments recently were also put for the indepen-
is, at the moment, not clear. tight be that in our case the dently by Leboret al.[37].
coupling between the TDOF and the ODOF is weaker than From Fig. 3b) we recognize that for this correlation func-
in the other cases, but further investigations on this point aréon the TTSP holds well for times larger tha”(T), the
needed. a-relaxation time forC(ZS)(t), but that for shorter times quite
Next we investigate the time and temperature dependencsignificant discrepancies are observed, as it was the case for
of C{(t) [see Eq(2)], which is shown in Fig. 3. From Fig. C{¥. Thus we come to the conclusion that the relaxation
3(a) we see thatCP)(t) decays qualitatively similarly to behaviors ofC{? andCY are qualitatively different.
C(ls)(t) [Fig. 2(@)]. For the former, however, the height of the  Since the time dependence 6&5) seems to differ from
shoulder is lower than the one @{”(t), which is reason- the one ofC{’, we have also studied the one 6f° for
able since, to a first approximation, this height is given byl=3,...,6, which, for the lowest temperature investigated,
the value of the second Legendre polynomial evaluated at thgre show in Fig. 4. From this figure we recognize ttipthe
height of the shoulder irﬁ:(f) [see Eqg.(2)]. Note that this height of the plateau decreases with increasingrhich can
height is a measure of the corresponding nonergodicity pabe rationalized by the same reasoning given ab@vewith
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FIG. 4. (a) Time dependence &® for |=1,...,6 forT=0.477, FIG. 5. Time dependence &, [see Eq.(1)] for all tempera-
the lowest temperature investigatetb) Time dependence of tures investigated versug) time t and (b) rescaled timet/7(T),
C)(t) for all temperatures investigated. wherer is the a-relaxation time.

a{hat the cross terms i@4(t) should not be neglected, at least
not in the strongly supercooled regime.

From Figs. 2a), 3(a), and a) we recognize that with
decreasing temperature the relaxation of the ODOF slows
?own dramatically. Thus it is interesting to investigate the
emperature dependence of the relaxation times. Since we
have found that the diffusion constatfig. 1) as well as
the a-relaxation times of the TDOR23] show a power-law
dependence on temperature, with the same critical tempera-
ture T., we checked whether also therelaxation times
A9(T), A9(T), and,(T) can be fitted with such a power
law (with the sameTl .=0.475. That this is indeed possible

increasingl the correlators seem to show more and more
logarithmic time dependence in tigerelaxation regime, and
(iii ) the correlators for odd values bfdecay faster than the
ones for even values of This effect can be understood by
taking into account that at low temperatures the molecule
make jumplike orientational flips of 180°, described in more
detail below, which lead to a relaxation@{® if | is odd, but
do not affect the correlators with even valuesl ofurther-
more, we have found that with increasing value lothe
TTSP holds better and bettg86], thus showing that from a
qualitative point of view the correlators for the ODOF be-

imi )
come more similar to the ones of the TDOF. Rz, e.g. for about two orders of magnitude inis demonstrated in

the TTSF_)_h()ldS very we[isee (E)'g' )] ) Fig. 6, where we show these quantities ver3usT; in a

In addition to the self-part€™, we have also determined o, pje ogarithmic plot. As it was the case for the diffusion
the time dependence @,(t), one of the collective correla-  ¢qnstanD, the values ofr for the two lowest temperatures
tion functions of the ODOFsee Eq.(1)]. This correlation  geyjate from the power laws since also here the relaxation is
function is shown in Fig. 5 for all temperatures investigated ¢ fast, which is likely to be related to hopping processes.
Although the noise in the data is significantly larger than therp, ;s \ve conclude that these processes affect the ODOF also.
one inC{®, as it is often the case for collective quantities, From Fig. 6 we also note that the fitted power laws do not
we can clearly recognize that the time dependenc€0fs  extend to such high temperatures as they did in the case of
qualitatively similar to the one oE{” and that the TTSRcf.  the diffusion constant. This is evidence that, similasitople
Fig. 5 does not seem to hold. Furthermore, we note thatliquids, the presence of a large temperature range for which
e.g., at the lowest temperature and fer10°® time units,  such a power law is observed is rather the exception than the
C(ls)(t) is about 25% larger tha@,(t), which demonstrates rule. The critical exponenty of the three power lawpsee
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FIG. 6. a-relaxation timer{® (squarey 7 (diamonds, and 7, FIG. 7. Time dependence dfA ¢(t))?) [see Eq.(6)] for all
(circles versus temperature. Solid lines are fits with a power law.temperatures investigated.
Also included is the inverse of the rotational diffusion constapt
(triangles. The dashed lines are guides to the eye. it with the temperature dependence of the relaxation times
7'(15) and 7'(25) .
Eq.(8)] are 1.66, 2.42, and 1.52 faf¥, 749, andr,. Since As already mentioned in Sec. Il, the calculationf is

the critical exponent for the diffusion constant is 2.20, wenumerically difficult when one uses a Green-Kubo relation.
thus find that the four critical exponents are all different from'nSt?ad: itis much simpler 1o compuiy from thg Einstein
each other, which disagrees with the prediction of MCT for'elation given by Eq(7). In Fig. 7 we show the time depen-
simple liquids. However, if we determine the critical expo- dence of the mean squared displacement of the anfftgs
nents forC® for 1=3,...,6, we find the values 2.25, 2.78, i.e., ({A¢(1)]%) = (| bn(t) — n(0)|?), Where ¢,(t) — ¢,(0)
2.55, and 2.80. These values have to be compared with tHg defined in Eq(6).
critical exponent for the TDOF, which is around 228] and From this figure we recognize that, analogous to the mean
thus quite close to the one 6X® for the larger values of.  squared displacemef@3], ([ A ¢(t)]%) shows at short times
Thus this is more evidence that the latter correlators behavé power law with exponent 2.0, which corresponds to the
qualitatively similarly to the ones for the TDOF. free rotational motion of the molecules. For high temperature
We also mention that a power-law fit bés) andr;, with this type of motion crosses over directly into a diffusional

the critical temperaturd, as a free parameter, leads to a behavior, i.e.{[A¢(t)]?) is given by a power law with ex-

slightly improved fit. The optimal values of the critical tem- Ponent 1.0. This is not the case for the low temperatures,
perature were to within 2% equal to 0.475, the valueTgf where the time regimes of the free rotation and the one of the
from the diffusion constant. Thus we find that the ODOF,diffusive behavior are separated by a time regime where the

measured bZ(® andC,, would indeed freeze very close to increase of [A ¢(t)]%) is slower than diffusive. The time at
T,=0.475 if the hopping processes were absent. which this subdiffusive behaviostarts is essentially the
CFurthermore we note that a fit of9 and = with the same as the one in which also the mean squared displace-
popular Vogel I’:ulcher lavh exg(B/(T—Ty)] alsi) works re ment (MSD) of the particles starts to show a subdiffusive
- A -

; ; ; Z(+)72
markably well. In particular, we find that this functional form gg;?sv'; I{Er%v:/ntﬁgn:jri?flsjts?\c/);htl)z’htg\iotIrrTi]: V;???ﬁ;gé&;lg —
is able to fit the data well all lower temperatures, i.e., also '

. . eratures, significantly leg®y about 1-2 decadgthan the
the data points at the two lowest temperatures, for which thgmes whereqthe MSDystSrtgto show the diffus)igve behavior
power law fails to fit the data. Thus we conclude that if see '

n'I'h ite th litati imilarity of the ti -
as a mere fitting function, the Vogel-Fulcher law gives a us, despite the qualitative similarity of the time depen

better fit than the power law. However, the Vogel-Fulcherd€nce of{[A¢(t)]?) and the MSD, there are some distinct
temperatureT, was determined to be 0.328 and 0.386 for differences between the two quﬁantmes and thus we conclude
79 and 7§ , respectively. Thus we find that the two tem- that the plateaulike region if A ¢(t)]%) shouldnot be iden-
peratures differ by about 20%, hence indicating, that, accordified with the g-relaxation regime. We will return to this
ing to the Vogel-Fulcher fits, there is no unique temperaturd©int later. )

at which the system ceases to relax. Therefore, this sort of fit From the time dependence @fA #(1)]?) it is simple to

is, from a physical point of view, less appealing. computeD, [see Eq.(7)]. Note that, becausé A é(t)]%)

The a-relaxation timesTl(S)(T) and 7(T) are analogous reaches its diffusive limit at shorter times than the MSD
guantities to thex-relaxation timer(T) of the intermediate does, the rotational diffusion constant can be calculated reli-
scattering function. Since in supercooled liquids the temperaably from a relatively short run, an observation of which we
ture dependence of and of the diffusion constant can be will make use of below.
different (see, e.g., Refd15, 21)) it is interesting to inves- In Fig. 8 we show the temperature dependend® oh an
tigate also theotational diffusion constanD, and compare Arrhenius plot. In order to facilitate the comparison between
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o 10' 4 . . quenched the system =0.41. After allowing the system
- 1o to relax for 2.0<10° time units we started to measure the
21 10° 4 time dependence of(A$)?) for three independent runs.
Note that this time is clearly not sufficient to equilibrate the
107" - system with respect to its TDOF, but it should at least allow
the system to get reasonably close to its equilibrium state at
107 | this temperature. The so-obtaingd\ ¢(t)]?) is included in
Fig. 7 as well(bottom curve. We see that even at this low
10° 4 temperature the diffusive rotational behavior can be observed
on the time scale of our simulation. Thus we could extract
107 . the corresponding value @, and have included it in Fig. 8
- \ as well. This data point lies reasonably close to an extrapo-
107° | i L lation for the previously fitted Arrhenius law and is com-

0.0 0.5 1.0 1.5 20 . 25 plgtely_ off the curve for the_z power Igv{?l'he fact that this
T point lies slightly above this Arrhenius law can be under-
_ - stood by taking into account that at this temperature the
FIG. 8. Temperature dependence of the rotational diffusion conTpOE are not quite relaxed. Hence it can be expected that all
stantD, (diamond$ and of the translational diffusion constddt  the relaxation times are smaller than they would be in an
(circles. D is multiplied by 15 so that the two curves coincide at gqjjjibrated sample and that therefore the measured diffusion
high temperatures. The straight solid line is an Arrhenius bEhaVi%onstant is too largg38].) Thus we conclude that the rota-
and the dashed line is a power law with a critical temperature 0'38tional diffusion constan:[ as defined in E(), follows an
The dotted lines are guides to the eye. Arrhenius law even at very low temperatures and that it is

. . e very unlikely that its temperature dependence is given by a
the rotational and translational diffusion constant, we haV%oxer law. y P P 9 y

included the latter in the figure as we{Note that we have In Fig. 6 we have seen that the relaxation times of the

multiplied D by 15 in order to maké® andD, coincide at g jentational correlation functions show a power-law depen-
high temperatures. A_Iso it should be rememberedEhahd  yence on temperature and that the critical temperafyns

D, have different unit3.We see that for temperatures less gry close to the one of the translational diffusion constant or
than 2.0 the datadiamonds can be fitted well with an  he'one of the intermediate scattering function. From Fig. 8 it
Arrhenius law(solid straight ling. Furthermore, we recog- s recognized, however, that the rotational diffusion constant

nize that the temperature dependenc®pffollows the one b - goesnot show any exceptional temperature dependence
of D for high temperatures, but that when the system starts tQ, e vicinity of T, [to see this we have included in Fig. 6

become supercooled, the curve @rdrops significantly be- 4156 the inverse ob, (triangles and it can clearly be seen
low the one forD, . Thus we find that at high enough tem- 5t no power law is observed for this quantitgt first view
peratures the ODOF and the TDOF couple strongly enougghese two facts seem to contradict each other, but as we will

to show the same temperature dependenc®ofand D,  ghow now this is not the case at all. In order for the time
which is in agreement with the well-known Sto"es'E'nSte'”correlation functionsc(f) and C(ZS) to decay to zero it is

and Stokes-Einstein-Debye relations. For lower temper""tur%ecessary that the orientation of the molecules changes by an

D shows the power law discussed in Fig. 1, the reason fogn le on the order of 180° and 90° in the case':@‘? and
which are likely the mode-coupling effects. In contrast to (g .
C3”, respectively. In order to undergo such a large change

this, D, shows an Arrhenius law from which we can con- . ) ; .

clude that the rotational motion of the molecule is an acti-mc orientation, a molecule has to wait until the_cage formed

vated process. We will study this process in more detalil bepy the sgrroundlng molecules brgaks. up. The time for th|s to
happen is related to the relaxation time of the translational

low. d f freedom and thus we find that the relaxation ti
We have also checked whether at low temperatures, i.eG€9r€es of freedom and thus we find that the relaxation times

2.0=T=0.477, the temperature dependenceDof can be of Cf¥ and C? become very large when the temperature
fitted well by a power law and found that this is indeed @PProaches.. o S
possible with a critical temperature around O(@ashed line For the rotational diffusion constant the situation is d_|ffer—
in Fig. 8. This temperature is significantly lower than the €nt: As can be seen from Ed$) and(7), D, remains finite
critical temperaturel, we found for the diffusion constant, as long as there is a possibility that¢(t)|? increaseglin-

the intermediate scattering function, and the relaxation timesarly) with time. At low temperatures a molecule will not be
of C{¥ andC,, which was 0.475. In order to discriminate able to make large changes of its orientation, but a small
between the two functional fornférrhenius and power lay  librational (tumbling motion is still possiblgfor the TDOF
we made use of the observation described above that tH8is corresponds to the rattling of the particles in their gage
rotational diffusion constant can be determined from a relawhich was nicely demonstrated by Reneeal. for a system
tively short run(compared to thex-relaxation times of the of infinitely thin rods on a cubic latticE31]. It is not hard to
TDOPF); see Fig. 7. Thus we used the temperature deperf€e that this librational motion gives rise to a diffusive move-
dence of the densityobtained from our equilibrated runs at ment of thez component of the vect(ﬁs and hence to a finite
temperature¥=0.477 to estimate the volume of the system value ofD, (here thez axis is defined by the molecular axis
at T=0.41. We then set up the volume of the system suclof the molecule at time zeyo

that its density corresponded to this extrapolated value and In order to see this effect more clearly we have investi-
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FIG. 9. Time dependence of(A #0?%), ((A¢y)?, and FIG. 10. Time dependence of the autocorrelation funciifoit)
{(A¢,)?) and their sun{(A ¢)?) [see Eq(6)] for T=0.41. See text  of the angular velocitiefsee Eq.(4)] for all temperatures investi-
for details. gated.

gated the orientational dynamics of the moleculesan.41  Self part of the Van Hove correlation function, i.e.,

in more detail. At this low temperature the orientation of N

most of the molecules stays for a long time in the vicinity of B 1 -

the direction it was at time=0. Thus we determined the G0.0=Nsing .21 (8(0=cos Tui(t)-ui(0)])),
mean orientation of the axis of each molecule by averaging (1D
its direction over a period of % 10® time units. Note that

such a mean direction makes only sense if the orientation Qfherey;(t) is the unit vector parallel to the axis of molecule
the molecule does not change significantly. Hence we wilf gt timet. In Fig. 11 we shows(6,t) for different tempera-
restrict the following analysis to only those molecules fory,res. Note thaG(6,t) is defined such that for long times it
which the maximum deviation from this mean axis was |essapproaches 1.0 for all values éf From Fig. 11a) we rec-
than 45°. In the considered time window this is the case fopgnize that forT=2.0 this function decays monotonically in
74% of the molecules. Having determined the meaaxis, g for all times. This changes when the temperature is de-
we chose arx and ay axis perpendicular to t2he axis and  creased td = 0.63[Fig. 11(b)] since then, e.g., the curve for
computeg the time dependence (fA¢.(1)]%)=(|ba(t)  t=77.7(bold dashed curjeshows a small additional peak at
— $4(0)] ), With a e {x,y,z}. The time dependence of tzhese 180° that is separated from the main peak at 0° by a shallow
three functions are shown in Fig. 9. We see tfiadt$,(t)]°)  minimum around 120°. This additional peak stems from mol-
is indeed significantly larger thar{[A.(t)]1*) and  ecules that underwent a rotation of 180°. This feature be-
([A¢,()]%). This is in accordance with the picture put forth comes much more pronounced when the temperature is de-
above that the orientational diffusion of the molecules in thegreased further tor=0.477 [Fig. 11(c)]. The mentioned
z direction is much larger than the one in thandy direc-  minimum now exists for a large time range before it starts to
tions. We also recognize that the latter are nompletely  disappear on the time scale of therelaxation. At even
suppressed, which is likely due to the fact that the cage ifgwer temperatureT = 0.41[Fig. 11(d)], the minimum does
which the molecule sits is still slowly changing with time. It ot show any sign of filling up at all on the time scale of our
is important to notice that similar arguments do not hold forgimylation. However, we see that the peak at 180° is still
the TDOF. The rattling of the center of mass within a cage isshservable, which means that a significant fraction of the
isotropic on the average. It is the direction of the moleculanyglecules made a flip of 180°.
axis that breaks this isotropy on a “mesoscopic” time scale. T study these 180° jumps on a more microscopic level,
The fact that at low temperatures the molecules perforiye have also investigated the time dependence of the @ngle
for along time a librational motion can also be demonstrateg individual molecules. From such studies we found that at
nicely by considering the autocorrelation functi#f,(t) of  |ow temperatures, i.eT=0.41, thez axis of the molecules
the angular velocityo(t); see Eq(4). As illustrated by Ren- stays for a long time in the vicinity of its orientation tat 0
neret al, ¥,(t) is expected to show a plateau with a heightand then undergoeselatively quickly a flip of 180°(see Fig.
equal to or less than 0.25 if the motion of the molecule is of12 for three representative trajectojie@ualitatively similar
a librational type{31]. In Fig. 10 we show the time depen- results have been reported in Rgf7]. The typical time for
dence of¥, for all temperatures investigated. From this fig- this flip is around 50 time units, but also fasfeee, e.g., Fig.
ure we recognize that thghort time relaxation time of¥, 12(b)] and slower transitions can be observed. This transition
decreasesvith decreasing temperature and that at low tem-+ime is relatively long compared to the time scale dfrans-
peratures the correlation function shows indeed a plateau. lationa) vibration of a molecule in its cage, which is on the
A different way to study the orientational motion of the order of two time units. Therefore, we conclude that such a
molecules is to investigate the time dependence of the distrit80° flip is not a fast process in which the molecule over-
bution functionG(6,t), which is defined analogously to the comes one barrier in a quasiballistic way, but rather the sum
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FIG. 11. FunctionG(#6,t) for different times and temperatures. Consecutive curves are spaced by about a factor of 2 in time. The bold
curves correspond to a time of approximately 0.64. The insets show the same curves on an expandeyl Bea?e0, (b) T=0.63, (c)
T=0.477, andd) T=0.41.

of a quick succession of smaller jumps. Finally, we mentiononly microscopic theory that predicts, in its idealized ver-
that the molecules do not show this sort of little jump eithersion, a glass transition at a temperatiite we have checked
before or after they undergo a 180° flip, which shows thathe consistency of our results with the predictions of this
these little jumps are associated with the flips. theory.

Finally, we note that the observed 180° jumps resemble |n the a-relaxation regime MCT predicts in the vicinity of
the ones found in mixed crystals. For instance, the CN molT_ 3 power-law behavior for the temperature dependence of
ecule in KCNBr; ., undergoes a glass transition at a téM-the corresponding relaxation times and the diffusion con-
perature Ty, where thequadrupolar degrees of freedom  gtants[cf. Egs. (8) and (9)]. We find that the translational
freeze into an orientational glass, whereasdfplar order, it sion constanD as well as the relaxation timesfor the

|.e.,°t.he head-tail dynamics, remains ergoﬁﬂs_ : Thege orientational correlator€(® andC, can indeed be fitted by
180° jumps of CN belowl; also exhibit Arrhenius behavior - .
a power law and that the transition temperaturg is

[rﬁ(ﬂeizﬁe:re thus similar to the dynamics of our dlatom|c0.475t 0.005. This fit describes the data fBr and = very
well for about four and two decades, respectively. The fact
that asinglecritical temperature exists is consistent with the

V. CONCLUSION molecular MCT[27,28. Different transition scenarios with

The main motivation of this paper has been to investigaténore than one critical temperature can only exist for linear
the dynamics of the orientational degrees of freedom in dnolecules with head-tail symmetry, which is not the case for
supercooled molecular liquid. This was done by means of &ur molecule.
molecular-dynamics simulation for a very simple molecular The exponents of the power laws are not universal, but
system, a liquid of diatomic, rigid molecules. vary between 1.52 and 2.42. The universality of these expo-

The first question we addressed was how the translationalents for thex relaxation of various correlators, as predicted
and the orientational degrees of freedom slow down if theoy MCT for simple liquids, is based on the factorization
temperature is decreased and the system becomes strongifigorem[1]. It is expected that fomolecular liquids the
supercooled. Since the mode-coupling theory is presently theame reasoning can be applied and that therefore MCT pre-
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= 180 different temperature dependence from the quantities just
2 (@) discussed. For high temperaturBs,andD are proportional
S 450 a to each other, in accordance with the hydrodynamic Stokes-
Einstein and Stokes-Einstein-Debye relations. However, be-
120 | g low a temperaturel* ~1.4, which is far abovel, D is
described well by the mentioned power law, wher&ss
90 - g shows an Arrhenius dependence. We find tfiais the tem-
perature at which the cage effect starts to become important,
60 - a i.e., the system begins to be supercooled. This can be in-
ferred from the fact that af*, (Ar?) and((A$)?) start to
30 1 L show anomalous diffusion behavior at intermediate times.
[ Thus we conclude that the breakdown of this aspect of the
0 , , : hydrodynamic equations and the onset of the cage effect in
0.0 50.0 100.0 150.0 ¢ 200.0 supercooled liquids occur at the same temperature. We
stress, however, that the different temperature dependence of
"8? 180 . ! D andD, belowT* is notrelated to the similar phenomenon
5, (b) observed in experimenf89]. In these experiments the relax-
D . . . - .
150 1 n ation of the orientational vectar,(t) of the nth molecule is
studied. The measured quantity corresponds to the correlator
120 1 r C®(t) [see Eq.(2)]. In most theoretical approaches the ro-
tational dynamics is described by a Smoluchowski equation
90 - a in which it is assumed that the angular velocities can be
eliminated adiabatically. This crucial assumption, as well as
60 - r the subsequent linearization, leads to exponentialrelax-
ation with ana-relaxation timer(® that is proportional to
30 1 r 1/D,I(1+1) [40]. Using this relationshipp, can then be
deduced. Our results at lower temperatures are not consistent
00 0 50.0 100.0 150.0 500.0 with this theoretical result becaugg D,(T) is not propor-
' ' ' ot ' tional to[ 79(T)]~* and (i) 79(T)/7Y(T)+ 3. The reason
= 180 for this is the nonexponential relaxation we have found for
3 © which the proportionality oD, and ({%) ~* and the relation
CR i 7917 =3 are not granted.
In the vicinity of T, the data forD and 7 deviate from
120 4 g the power law observed at intermediate temperatuidse
same deviations are found for tlherelaxation times of the
90 1 3 coherent and incoherent intermediate scattering functions of
the center of the moleculd®3].) This is likely due to the
60 1 a hopping processes, which restore ergodicity even at low tem-
peratures. If hopping of the center of mass of the molecules
30 - b becomes important at lower temperatures, this should be
seen in the self part of the Van Hove correlation function
0 ‘ Gg(r,t) (see, e.g., Ref13]). Surprisingly, even at the lowest

0.0 50.0 1000  150.0 2000  temperaturel=0.477,G(r,t) does not show any sign of a
t second(smalle) peak at a distance~ 1, which corresponds
_ o to the mean distance between two neighboring molecules
FIG. 12. Time dependence of the anglef an individual mol- 23] ThatD(T) nevertheless deviates from a power law at
ecule in the.tlme range where the molecule makes a 180° flip. Threg,,, 1 may be explained by the jumplike reorientations of the
representative curves are shown=0.41. ODOF, which we have identified in the distribution function
G(6,t) as 180° flips. These jumps, which were also observed
dicts also for such systems the universalityyf27]. The in earlier molecular-dynamics simulatiofs6—1§, may lead
fact that this is in contrast to our findings is, however, prob-to a local “melting” of the neighborhood of a molecule that
ably not a consequence of the molecular character of ouust jumped, thereby allowing a translational diffusion with-
system since it has been shown that alscaomicsystems, out the molecule having to jump over the walls of its cage.
e.g., the diffusion constant and therelaxation times do not The rotational diffusion measured Iy, is an activated pro-
have the same expondri5]. Thus is seems that with regard cess, at least for lower temperaturesTitdependence can be
to this, the theory is not as reliable as with regard to its othedescribed by an Arrhenius law even for a temperature
predictions. The reason why this is the case is, howeverT=0.41 that is far belowl ;. This Arrhenius dependence is
presently not understood. somewhat reminiscent of the temperature dependence of the
The next interesting result is that the rotational diffusionJohari-Goldstein3 peak in the dynamic susceptibilify1].
constantD,, as defined by Eq(7), shows a significantly Since we have shown that the Arrhenius dependenge oS



56 DYNAMICS OF THE ROTATIONAL DEGREES @ . .. 5461

related to the librational motion of the molecules, one thusdespite the fact that the temperature dependence of the relax-

might speculate as to whether the dynamics leading tg8the ation times of the TDOF and of the ODOF are very similar,

peak are indeed related to such librations. However, in ordethe relaxation dynamics of the two types of correlation func-

to decide this one would have to investigate the equilibriuntions is, if =1 or | =2, qualitatively different. Finally, we

dynamics of the systems at significantly lower temperaturesnention that at low temperaturg®{®(t) and C,(t) differ

than is presently possible. from each other in ther-relaxation regime by about 25%,
Regarding the time dependence of the various correlatorghich demonstrates that the cross term€iift) should not

at low temperatures, we have found a two-step relaxatiome neglected.

process, with a strongly nonexponential behavior, for all of

them. This is in agreement with the results in R¢16-19,

21] and also with MCT. However, in contrast to the predic-

tion of MCT, the time-temperature superposition principle We thank M. Ediger for useful comments and the DFG,

does not seem to work very well for the orientational corr-through SFB 262, for financial support. Part of this work was

elators investigated here, although it does soG@§ with  done on the computer facilities of the Regionales Rechen-

=3 and for the correlators of the TDOF. This shows that,zentrum Kaiserslautern.
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